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bstract

new strength test for ceramic spheres (balls) is presented. A long narrow notch is cut in the equatorial plane of the ball and the ball is then
oaded in compression perpendicular to the notch. This causes tensile stresses in the outer surface region of the ball opposite to the notch, which are
nalysed carefully with finite element (FE) methods. The tensile stress amplitude depends on the bending moment in the notch ligament – given
y the applied force – and on details of the notch geometry. The stress state in the highly stressed surface is almost uniaxial showing only a slight
nfluence of Poisson’s ratio. Numerical solutions for balls with quite different notch geometries are given.

Strength tests have been performed on commercial silicon nitride balls of 5 mm diameter. Two sets of specimens having notches of different
ength have been tested. Although the typical fracture loads in both sets of data are quite different, the tensile strengths are closely similar. This

ndicates the validity of the data evaluations. Experimental details are discussed and an analysis of the experimental uncertainties on the test results
s made. For balls with 5 mm the uncertainties are estimated to be less than ±3% (of the measured value). For balls having a diameter of 10 mm
r more the uncertainties are less than ±1%.

2009 Elsevier Ltd. All rights reserved.
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. Introduction

Silicon nitride ceramic balls have been used in high-
erformance, highly stressed bearing races for the last decade.1

ompared with steel, silicon nitride has higher hardness,
oung’s modulus, wear and corrosion resistance, and a lower
ensity, which are very beneficial for bearing applications. If
sed in electric power generation the high electrical resistance
f silicon nitride makes electrical isolation via the bearing
ossible.2 However, ceramic materials are more brittle than
teels; therefore information on the strength of the balls is essen-
ial, but simple strength testing methods for balls are missing up
ill now.

Standard specifications exist for determining the properties

f silicon nitrides for bearing balls,3,4 but these require the
trength of a candidate material to be determined using the
sual four-point flexure test5–7 on 3 mm × 4 mm × >45 mm test-
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ieces which generally have to be cut from specially prepared
late material fabricated in an identical manner, rather than from
nished balls. For large balls (having a diameter of say 15 mm
r larger) it is possible to machine bending specimens out of the
alls in order to perform three- or four-point bending tests,8 but
his procedure is very costly. The surface of the specimens has to
e prepared very carefully to avoid unrepresentative machining
amage. Inevitably, in testing these specimens in bending the
niaxial tensile strength of the material is measured in materi-
ls originating from the interior of the balls with concomitant
achining damage, but it should be noted that in bearing balls

igh tensile stresses only occur at and near their polished surface.
Disc shaped specimens can also be cut from the balls. Testing

an be done by some kind of biaxial disc testing, e.g. using
he ring-on-ring9,10 or the ball-on-three-balls test.11,12 This test
an also be applied to specimens having only a few millimetres
iameter. Again, specimen preparation is time consuming and

ostly, and as with the beam bending tests the interior of the ball
aterial is tested. The preparation of the tensile loaded surface

equires even more care than that of beam bending specimens,
ince under a biaxial stress state surface cracks of any direction

mailto:phs@unileoben.ac.at
dx.doi.org/10.1016/j.jeurceramsoc.2009.02.018
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to the Y-axis. The force is applied parallel to the Z-axis at the
poles of the sphere, see arrows in Fig. 1. The X–Z plane is also
a plane of symmetry; therefore only a 1/4 model is needed to
describe the problem (for the case of the ideal arrangement).
448 P. Supancic et al. / Journal of the Euro

re possible fracture origins (in the case of uniaxial bending
ests, cracks parallel to the stress direction are harmless).13–15

These classical methods of ceramic material testing thus do
ot reflect actual ball properties. Some work has been done to
est whole balls by squeezing them together. This can be done
y squeezing one ball between two plates, by positioning two
alls one on top of the other and then squeezing them between
lates, or even by positioning three balls on top of each other
nd then squeezing them between plates.16 The first variety of
his test is expected not to be very reliable; significant tensile
tresses only occur in a ring shaped zone around the contact
rea between the plates and the ball (i.e. Hertzian stresses17,18).
he highly stressed zone is very close to the area where the

oad is transferred from the fixture into the ball. Therefore the
ctual amplitude of the highest tensile stresses is sensitive to
he details of the contact zone, e.g. some plastic deformation of
he plates, the friction between the ball surface and the plates,
urface roughness, or even some surface contamination. The
oading situation is better defined in the second variety of this
est, where the contact situation between the two balls is sym-

etrical and therefore free from friction effects. (Remark: by
sing spherical seats on the ends of the pistons the contact sit-
ation between the ball and piston is harmless with respect to
ailure initiation.) Therefore this type of test should be reliable
f fracture starts near the middle plane. In the case of three balls,
he situation for the ball in the middle is well defined on both
ontact regions and test results are significant, and reliable if
racture starts in the ring shaped near surface regions around
he contact planes of the middle ball. This can be recognised by
ractographic analysis of the broken pieces. However, the inter-
retation of the test results is still a little unclear. Recently, it
as been claimed that this test does not determine the strength
f the balls but is controlled by toughness and plasticity of the
all material,8,19 and a similar conclusion was found recently
or the contact loading of ceramic tools for metal forming.20

In this paper, a new strength test – the notched ball test – is
roposed. A long and narrow notch is cut along the equatorial
lane of the ball. The ball is loaded in compression along the
xis perpendicular to this plane. High tensile stresses occur in
he outer surface region of the ball opposite the notch root (in the
igament).8 These stresses are used to determine the strength of
he ball. Fracture starts from defects which exist in this region.
t is important to note, that in this area the notched ball still has
ts original surface. Therefore notched ball test results are also

measure for the quality of the balls, i.e. of the ball surface
reparation.

A similar test – the C-sphere test – was proposed in 2007 by
ereszczak et al.21 In their test they used a wide notch with a

xed geometry; the notch length is 3/4 of the diameter, the notch
idth is equal to half of the diameter and the shape of the notch

oot is a semicircle. This notch geometry is used to maximise
he effective surface of the specimen. But this wide notch is
ifficult and expensive to machine precisely. In our notched ball

est a narrower notch is used, having a typical width between

and 20% of the diameter and a typical length of 75–90% of
he diameter. The exact geometry of the notch root (e.g. half
ircle, rectangular, etc.) can be determined after machining and
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s used for the determination of the stress field. These notches
an be machined using simple commercially available grinding
heels.

. Analysis of the stress field in the notched ball
pecimen

.1. Overview

In this section, the stress field of ideally notched balls is
escribed. All examples shown here are based on spheres with
diameter of D = 5 mm and for a material with Poisson’s ratio
= 0.27 corresponding to that of the Si3N4 balls tested exper-

mentally. However, the results can be generalised by scaling
ith the diameter of the spheres and a simple formula to cal-

ulate peak stresses given by the applied force will be derived
similar to the evaluation of a bending test). The general fea-
ure of this type of notched ball test is a narrow notch cut into a
phere along the equatorial plane. A schematic sketch of the test-
ng arrangement and the definitions of the geometric parameters
re given in Figs. 1 and 2.

A finite element (FE) model has been programmed within
he framework of ANSYS® classic, version 11SP1.22 The whole
odel is built up parametrically by programming an input code
ith the programming language APDL (APDL: Ansys Para-
etric Design Language23), and uses pure hexahedra elements.
ighly stressed regions are meshed with smaller elements (i.e.

he region within and around the ligament behind the notch base),
hile other parts of minor interest and low stress gradients have

arger elements (see Fig. 2).
The middle plane of the notch (i.e. plane of symmetry) is

efined to be the X–Y plane. The base of the notch root is parallel
ig. 1. Sketch of the testing arrangement: the notched ball (D = 2R = 5 mm) is
oaded perpendicular to the equator plane at the poles, see arrows. The axes
hown define the Cartesian coordinate system used. The origin is the center
f the ball. WN is the width of the notch. The other geometric parameters are
escribed in Fig. 2.
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Fig. 2. The mesh of a notched ball specimen (quarter model). For the purposes of
clarity the plotted mesh is relatively coarse. The meshes used for the calculations
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Fig. 4. Course of the first and second principal stresses (i.e. σθ and σϕ) along
the equator line (i.e. paths 1–3, compare Fig. 3), and along the great circle
perpendicular to the equator plane (i.e. paths 1–2). The second principal stresses
are small compared to the first ones. The angle θ′ is measured between position
1 and the corresponding point on a certain path with respect to the center of
the ball. In case of describing paths 1–2, it is a vertical angle, while in case of
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re much finer and have up to one million nodes. The remaining ligament on the
–Y plane has the maximum thickness h = D − LN. Its length a depends on the
all radius R and the notch length LN.

The stress field in the (ideal) ball specimen depends on the
all radius, R (diameter: D), the notch length, LN, the notch
idth, WN, and the radius of the fillet RN of the notch base,
hich are defined in Figs. 1 and 2. The stress field is not uniax-

al. Therefore it also depends on Poisson’s ratio, ν (note: within
he linear-elastic approach the stress is independent of Young’s

odulus, since the experiment is force driven). Of course, the
tress also depends on the applied force, F. In total these are six
ndependent parameters. To generalise the results the definition
f the following dimensionless geometric parameters is conve-
ient: the relative notch length λ = LN/D, the relative width of

he notch ω = WN/D, and the relative radius of the fillet of the
otch base ρ = RN/WN. (Remark: the domain of the relative fil-
et radius is 0 ≤ ρ ≤ 0.5; 0 corresponds to a rectangular, sharply
ornered notch root.)

o
F

s

ig. 3. Distribution of the first principal stress in the notched ball specimen (left: t
ccording the planes of symmetry on a quarter model). The parameters used are: D = 5
ata of a silicon nitride material are used (E = 300 GPa and ν = 0.27). The applied forc
ase. The maximum of the first principal stress (peak stress) is at position 1. The te
tresses with respect to both directions, namely the azimuth ϕ and polar angle θ (defi
s parallel to the Z-axis (identical to σθ).
aths 1–3 it is an horizontal angle (identical to the polar angle in the spherical
oordinate system).

An example of the stress field in a typical notched ball spec-
men is shown in Fig. 3. The distribution of the first principal
tress is plotted on the surface (left) and on the planes of sym-
etry (right) of the specimen. The used parameters are given in

he figure caption. It should be noted that in the loading range
f interest the stress field linearly scales with the applied force,

.

Significant tensile stresses arise in and near a relatively large
urface area in the ligament opposite the notch. Fig. 4 shows

ensile stressed region at the surface of the ball; right: view on inner regions
mm, LN = 4 mm, WN = 0.8 mm, RN = 0.24 mm. For the elastic constants, typical
e is F = 1 N. The tensile stresses concentrate in the ligament opposite the notch
nsile peak stress is 4.16 MPa/N. The black double arrows indicate tangential

ned in a spherical coordinate system). At point 1 the maximum stress direction
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Fig. 5. The maximum of the first principal stress at the equatorial plane (at
position 1) versus the ligament thickness in a double logarithmic scale for several
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width is wide enough the tensile peak stress occurs a little above
(and below) the equatorial plane, i.e. the tensile peak stress in
the specimen is no longer at position 1 in the equatorial plane.

Fig. 6. Course of the first principal stress along the great circle of the sphere
450 P. Supancic et al. / Journal of the Euro

he course of the first and second principal stresses (identical to
θ and σϕ) along the equator line (path from 1 to 3; see Fig. 2)
nd along the great circle perpendicular to the equator line (path
rom 1 to 2) for the relative fillet radius ρ = 0.3. Stresses higher
han 90% of the tensile peak stress occur in a relatively large
egion (in the case shown in Figs. 3 and 4 this regime goes
rom −27◦ to +27◦ along the equator line and from −12◦ to
12◦ along the great circle perpendicular to the equator). Outside

his region the stress amplitudes strongly decrease. Near the
ontact point (at the poles of the sphere) the stress amplitude
teeply increases and becomes singular. But this singularity is
n unrealistic consequence of the point loading model used in
his analysis. Taking a realistic contact situation into account the
ingularity would not occur. Since the load transfer occurs far
rom the ligament region these details of the modelling of the
ontact are not relevant for the stresses in the ligament.

Also shown is the course of the second principal stress. It
an be recognised that it is much smaller than the first principal
tress. In fact in the ligament opposite the notch the stress state is
lmost uniaxial and resembles that of a bending bar. Therefore
he influence of Poisson’s ratio on the maximum value of the
tress is very limited. For the case analysed in Figs. 3 and 4
oisson’s ratio of 0.20 (instead of 0.27) would cause a peak

ensile stress of 4.19 MPa (instead of 4.16 in the case of Fig. 3).
or typical range of Poisson’s ratios of ceramic materials (i.e.
.2–0.3) the variation of the stress amplitude is therefore smaller
han 1%.

In the region around the notch root only compressive stresses
ccur. This fact is of great practical relevance. In this area
ome machining damage caused by specimen preparation is
nevitable. However, this damaged region is not stressed in ten-
ion, so such damage will have no relevance for the notched ball
est results.

In the following section the influence of the notch geometry
n the stress field will be discussed.

.2. Influence of the length, the width and the fillet radius of
he notch

The stress field in the ligament resembles that of a bent beam,
here the tensile stress scales with the square of the height of the
eam. Similar behaviour can be expected for the notched ball test
eometry. Here the height corresponds to the ligament thickness
(see Fig. 2). It can therefore be expected that the ligament

hickness h = D − LN (or the notch length, respectively) will be
he most prominent geometric parameter for the amplitude of
he stress field.

Fig. 5 shows an evaluation of the principal stress at the equa-
or plane (i.e. at position 1) versus the notch length for several
ombinations of notch width and fillet radius. The force (1 N)
nd Poisson’s ratio (0.27) are kept constant. A steep increase
f the stress with increasing notch length (i.e. decreasing liga-

ent thickness) can be recognised. It is approximately inversely

roportional to the third power of the ligament thickness. By
omparison, the influence of the other parameters (notch width
nd fillet radius) on the tensile stress is weak.

p
r
i
e
f

ombinations of widths and fillet radii of the notch. The applied force is 1 N and
oisson’s ratio is 0.27. The (normalised) stress amplitude approximately depends
n the (−3)rd power of the ligament thickness.

For a very deep notch (λ = 0.9) the course of the first principal
tress along the great circle perpendicular to the equator (notch)
lane (paths 1–2) is shown in Fig. 6. The varied parameter in this
lot is the fillet radius. If it is half of the notch width a continuous
ecrease of the tensile stress from the equator to the pole occurs.
he maximum of the first principal stress at the equator plane is
t position 1. It is also the tensile peak stress in the specimen.
ut if the fillet radius is small (e.g. if it is 0) and if the notch
erpendicular to the equator (from 1 to 2). The curves are for three values of the
elative fillet radius of the notch. The applied force is 1 N and Poisson’s ratio
s 0.27. Note that with small fillet radii the peak stress position moves from the
quatorial plane and splits into two maxima. The insert shows the stress field
or a fillet radius of 0.
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Fig. 7. Transition line between the regime with two and with a single maximum
of the first principal stress as a function of relative notch width and relative notch
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A power series for the evaluation of fN = fN(λ,ω,ρ,ν) has been
fitted to the numerical results of the parametric study. The fit
function describes the data gained by the numerical analysis
with an error less than 1%. The analysis has also been used to
ength. Poisson’s ratio is 0.27 and the relative fillet radius is ρ = 0. For larger
elative fillet radii the transition line would shift upwards. For ρ = 0.5 only the
one stress maximum” regime exists.

his situation is promoted by the fact that for wide and sharp
otches the minimum of the ligament thickness does not occur
t the equatorial plane (as for round notches) but occurs opposite
he two edges of the sharp notch. The curve for the intermediate
llet radius (i.e. ρ = 0.234 which is RN = 0.188 mm for this ball
ize) corresponds to the borderline between the regions with one
nd two maxima.

It can be recognised that the size of the area with almost
onstant stress amplitude is largest near that borderline. For
trength testing situations spatially constant stress states are
eneficial. Therefore notch geometries near this borderline are
ecommended for notched ball specimens (but other geometries
an also be used and evaluated; details are described later). For
he following data evaluations the stress amplitude at position 1
s used for the determination of strength.

The boundary between the two-maxima region and the single-
aximum region is shown in Fig. 7 as a function of relative

otch width and relative notch length for a Poisson ratio of 0.27.
he borderline shows the situation for a sharp rectangular notch

fillet radius ρ = 0). It can be immediately recognised, that wide
nd deep notches promote the two-maxima regime. This regime
s also promoted by small fillet radii and does not occur for large
llet radii, i.e. for ρ = 0.5.

In the following the first principal stress at position 1 is used
or the determination of strength, as is the convention in all other
eramic mechanical testing. A general assessment for this stress
ill be given in the next section.

.3. A general solution for notched ball specimens

As shown in the previous sections, high tensile stresses occur
nly in the region of the remaining ligament behind the notch
ase. Apart from the applied force, the size of the cross-section
f the ligament, which is given by a circle segment (see Fig. 2),
lays a major role in determining the tensile stress amplitude.
To derive a simple formula for calculating the tensile stress
mplitude with respect to the applied force and geometry of the
pecimen, the approach of beam theory is used in a modified
ay. Actually, the loading situation in a notched ball specimen

F
c
0

eramic Society 29 (2009) 2447–2459 2451

s similar to that in a beam with a given cross-section (i.e. circle
egment) loaded by the superposition of a torque My and a com-
ressive stress (negligible in a first-order approximation), which
oth are proportional to the force (see Fig. 1 and Appendix A).
s a rough approximation within the regime of parameters used

n this work, the tensile stress amplitude σ is given by

≈ 6F

h2 . (1)

his equation is useful for quick estimations of the tensile stress
t position 1. Note that the stress amplitude does not depend on
he ball size directly; it depends on the ligament thickness h,
hich is, of course, related to the ball diameter in order to stay

n a regular parameter range.
A more accurate expression for the stress amplitude can be

escribed by

= fN

6F

h2 , (2)

here a dimensionless correction factor fN accounts for the devi-
tions of the approximate expression in Eq. (1). The function
N = fN(λ,ω,ρ,ν) depends on the relative notch length λ = LN/D,
he relative notch width ω = WN/D, the relative radius of the fil-
et ρ = RN/WN at the notch base and on Poisson’s ratio ν. This
unction has been determined numerically on the basis of several
undreds of FE-calculations in the parameter ranges which are
f interest for the notched ball test:

0.75 ≤ λ ≤ 0.92, 0.05 ≤ ω ≤ 0.20, 0.00 ≤ ρ ≤ 0.50,

0.20 ≤ ν ≤ 0.30. (3)

he factor fN increases with increasing notch length. In the
arameter range of interest it is between 0.4 and 1.5. It is plotted
n Fig. 8 versus the relative notch length for several combinations
f relative width and relative fillet radius of the notch. Poisson’s
atio is selected to be 0.27.
ig. 8. Dimensionless factor fN versus the relative notch length λ for several
ombinations of relative widths and fillet radii of the notch. Poisson’s ratio is
.27.
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Fig. 10. Arrangement to determine the notch length (ligament thickness). The
thickness of the measuring blade is adjusted to the notch width. The tip of the
blade is sharpened, so that the blade can reach the notch root even if the corners of
the notch are rounded. The measurement aid is positioned between the callipers
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heck the published results for the C-sphere test.21 Our results
nd the results published for this geometry match within 0.5%.
owever, the full power series has more than 50 terms and it

s inappropriate to publish it in the present paper (in the near
uture, the full formula will be published at our homepage24).

For the notched ball specimens used in the experimental part
f this paper (ω = 0.13, ν = 0.27, 0.75 ≤ λ ≤ 0.85, 0 ≤ ρ ≤ 0.5), a
implified analytical expression for fN for this range of parame-
ers is given below:

fN (λ, 0.13, ρ, 0.27) = −0.400

+ (0.083042 + 0.5740λ − 0.4300λ2)(1 − 0.085ρ)

(1 − 0.9535λ + 0.0503ρ2)
(4)

n summary, with the results described above, the full charac-
erisation of the stress state in notched ball specimens becomes
ossible.

. Experimental work

.1. Test procedure

Commercial silicon nitride balls with a diameter of 5.00 mm
ere used for this investigation. Young’s modulus of the material

s E = 310 GPa and Poisson’s ratio is ν = 0.27.
Specimen preparation was made in batches. Each batch of

alls (in this case 27 and 32 specimens, respectively) was care-
ully glued (crystalbondTM 500) in a specially designed guide
ail (see Fig. 9). This arrangement is made to ensure that the
otches are in the equatorial plane of the balls and that the length
f the notch in the batch is consistent. Special care was taken
o not damage the surface area of the balls opposite the notch
in the ligament). At one end of the row of balls a rectangular
late of the same silicon nitride material was also fixed in the

uide rail perpendicular to the row direction. Then the notches
ere machined into both balls and plate in one single operation

tep using a commercial diamond impregnated grinding wheel.
n the present case a wheel with a nominal width of 0.6 mm was

ig. 9. The notch in a row of ball specimens glued in the guide rail seen after
achining. The plate at the end of the row of balls can be recognised.
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f the micrometer screw. Measured is the difference between the edge of the
lade and the top position of the ball.

sed. The grinding wheel was redressed to a square edge after
achining each notch. It is assumed that the notch in the flat

nd-plate is representative of the notches in all the balls of the
atch. The width and fillet radii of the notches were determined
n the notch in the plate. Two different classes of notch lengths
ere machined (with about 78 and 82% of the ball diameter),
iving two sets of specimens having different regimes of fracture
oad.

After machining, the glue was removed by a thermal treat-
ent (ca. 140 ◦C) in a simple air furnace. The samples were then

leaned in acetone and were then ready for the determination of
he notch geometry. The notch length of each individual ball
as measured individually. For that a special measuring tool
as developed (see Fig. 10), which makes the use of a conven-

ional screw micrometer calliper possible. It is considered that
he measuring error is smaller than ±5 �m, i.e. the notch length
an be determined with a relative error of about ±0.1% or less,
nd hence and the ligament thickness with an error of about
0.5% or less (if the ligament thickness is about 20% of the ball

iameter). The individual values for the ligament thickness are
ater used for the evaluation of strength. In any event, a check
an be made by measuring the width of the fracture surface after
racture.

The measurement tool was also used to determine the position
f the notch in relation to the equatorial plane. For that, the tool
as rotated for 90◦ to leave the blade horizontal and was then
xed in that position. The specimens were placed on the blade
f the tool, and the distance between the notch face and the ball
ole, position 2, was measured. Then the specimen was turned
round and the distance of the other notch face to the position of
he pole opposite to position 2 was measured. The deviation of
he notch plane from the equatorial plane is half of the difference
etween the two distances. In practice, it was less than ±20 �m

sing careful set-up in machining.

The width and the radius of the fillet at the notch root were
etermined on the notched end-plate by light microscopy (see
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ig. 11. Notch width (625 ± 5 �m) and the radius of the fillet at the notch base
300–330 �m) were determined with an optical microscope.

ig. 11). It is assumed that the notch geometry of the balls of
ach batch is equal to that of the end-plate. The notch geometry
as determined for each batch separately. The measurement
ncertainty of the width is estimated to be ±10 �m or less. In
he case considered here, the notch width is 625 ± 5 �m; i.e. the
elative uncertainty is about ± 1% or less.

The measurement of the fillet radius is also indicated in
ig. 11. Here the estimated uncertainty is ±30 �m; i.e. the
elative uncertainty is about ±5% of the notch width.

Next, the specimens were fractured using a universal testing
achine. The specimens were placed between the two parallel

aced rams. The end-plates of these rams were made of hard-
ned steel. After the testing some indents similar to Brinell
ndents could be observed in the steel plates. Therefore some
riction cannot be excluded. A few additional tests were made
n fixtures with silicon nitride loading platens in order to reduce
ndentation and frictional effects. No significant influence of
riction on test results could be detected. However, for a clear
ssessment of this problem more experiments would be nec-
ssary. Clearly, to minimise any possible effect of frictional
ffects, it is recommended that silicon nitride platens should be
sed.

The notch was aligned perpendicular to the direction of load
pplication using a positioning aid (Fig. 12). The angular align-
ent of the equatorial plane is much better than ±1◦. Then a

reload is applied (about 10% of the estimated fracture load),
nd the positioning aid is removed. The load is increased at a rate
uch that fracture occurs within 10 s to 1 min. After the strength
ests a fractographic analysis of selected fracture surfaces has
een performed.

.2. Error analysis

For the validation of experimental results an analysis of

easurement uncertainties is essential. In this section the uncer-

ainties for the determination of the fracture stress are analysed.
he tensile stress at position 1 (which is used to determine the
trength of the balls) depends on five parameters (Eq. (2)): F, λ,

u
d
t
t

ig. 12. The specimen (marked by an arrow) is aligned perpendicular to the
oading direction with the use of a simple positioning aid.

, ρ and ν. The relative length parameters also depend on the
all diameter D.

Of course, the measuring uncertainty depends on the size of
he specimens. In the following the analysis is made in detail for
alls with a diameter of 5 mm. Later the uncertainties for other
all sizes will briefly be discussed.

Diameter. The diameters of the balls are determined with an
ccuracy of ±2 �m using a conventional micrometer calliper.
or balls having a diameter of 5 mm or larger, the corresponding
easurement uncertainty is less than ±0.04%. The influence on

he determination of strength is much smaller than 0.4%.
Force determination. Following Eq. (1) and for ceramic balls

aving strength of 100 MPa or more the expected fracture load
s 4 N or more (see Eq. (1) for h = 0.25 mm). With a typical
niversal testing machine equipped with a load cell of class
25,26 a measurement error for the force of less than 1% can
e expected. The force enters linearly into the determination
f strength. Therefore the measurement uncertainty due to the
orce measurement by a calibrated load cell is less than 1% of
trength.

Friction effects. Friction between the balls and the hardened
teel plates of the pistons in the testing machine cannot be com-
letely excluded. But we believe that the influence of friction on
trength is small, in any case smaller than the inherent scatter of
he data. In any case friction would cause a (small) systematic
verestimation of the strength, which is not taken into account in
ur data evaluation. In future experiments friction can be avoided
y the use of silicon nitride end-plates.

Poisson’s ratio. In general Poisson’s ratio is not precisely
nown but its influence on the stress at position 1 is negligible.
o give an example, if the relative measurement uncertainty of
oisson’s ratio is ±5%, its influence on the determination of the
tress is far less than ±0.1%.

Notch length and ligament thickness. We believe that the
easurement of the length of the notch (and of the ligament

hickness) can be made with an accuracy of ±5 �m or better

sing a conventional micrometer calliper and the measuring aids
escribed above. The essential step before the measurement is
hat the notch has to be cleaned carefully. For balls with a diame-
er of 5 mm and a very long notch length of 4.5 mm the precision
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Table 1
Strength test results gained on notched ball specimens. The ball diameter is 5.000 ± 0.001 mm and the Poisson ratio is 0.27. Numbers in round brackets are in relative
units (geometric data) and numbers in square brackets refer to the limits of the 90% confidence intervals resulting from the sampling procedure (Weibull parameters),
see Ref. [30].

Set A Set B

Notch length, LK (mm) (λ) 4.165–4.070 (0.81–0.83) 3.885–3.968 (0.77–0.79)
Ligament thickness, h (�m) (h/D) 835–930 (0.17–0.19) 1032–1115 (0.21–0.22)
Notch width, WN (�m) (ω) 630 ± 10 (0.126 ± 0.002) 630 ± 10 (0.126 ± 0.002)
Fillet radius, RN (�m) (ρ) 130 ± 20 (0.206 ± 0.03) 130 ± 20 (0.206 ± 0.03)
Fracture force range (N) 180–276 333–475
C [1304
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haracteristic strength (MPa) 1343
eibull modulus 12.1 [

f notch length measurement is about ±0.1%. The correspond-
ng measuring uncertainty for the ligament thickness is therefore

1%. The influence on the determination of strength is less
han ±3%. It should be noted that the ligament thickness varies
rom specimen to specimen and a precise determination of the
igament thickness is of the highest relevance for the precise
etermination of strength.

Notch width. The determination of the width of the notch is
one after machining in an optical microscope. It can easily be
etermined with an accuracy of ±5 �m or less. Since the notch
idth has only a minor effect on the tensile stress at position 1

he corresponding measuring uncertainty for the strength is as
mall as ±0.1%.

Fillet radius. The radius of the fillet of the notch base results
rom the wear of the grinding wheel and has to be determined
n an optical microscope after machining of the notch. Measure-

ent uncertainties are relatively large, i.e. they may be of the
rder of ±30 �m. For notches having a width of 300 �m (accu-
ate thinner notches are difficult to machine using conventional
rinding wheels) the corresponding relative uncertainty is about
7%. Following Eq. (2) this would result in a measurement

ncertainty for the stress of about ±3%. Of course, for wider
otches, the relative error is smaller.

Alignment of the specimen. This is made with a positioning
id as shown in Fig. 12. The thickness of the blade of the posi-
ioning aid is only a little smaller than the width of the notch (in
he order of 10 �m). The resulting twisting and tilting of the ball
epend on the size of the ball and the length of the notch. For
mm balls this would result in a maximal tilting angle of less

han ±1◦. An FE-calculation was made to analyse the influence
f this angle on the stress value. It results in an uncertainty of
uch less than ±0.1% of the determined stress value.
Offset of the notch. The former analyses were made for geo-

etrically ideal notched ball specimens. However, it is possible
hat the notch is not machined exactly along the equatorial plane
f the ball and that there exists a small offset. For a 5 mm ball
aving a notch width offset of 200 �m (4% of the diameter)
n FE-calculation was made. It increased the ligament stress
mplitude by 2.8%. The actual offset has been determined in
hese experiments less than 20 �m and the resulting measuring

ncertainty in stress is much less than 0.5%.

In summary, in the case of the 5 mm balls there are two sit-
ations which may cause large measurement uncertainties: if
ery deep notches are machined into the balls (i.e. λ > 0.9) the

t
o
i
d

–1384] 1336 [1303–1370]
4.9] 12.9 [9.8–15.7]

igament is very thin and uncertainties in the ligament measure-
ent may cause uncertainties in the stress determinations up to
3%. In the case of very narrow notches uncertainties in the
easurement of the fillet radius may cause uncertainties in the

tress determinations about ±2%. Furthermore the determina-
ion of the fracture load may have uncertainties up to ±1%. In
he case of the experiments described in the next section, the
otches were not so deep and narrow and the uncertainties due
o ligament and fillet radius measurement are much smaller than
n the extreme case discussed above. We believe that in this case
he overall measurement uncertainty is about ±2%.

From the practical point of view the applicability of this test
ill be restricted by the ability to machine precise notches into

he balls. Using typical facilities of a well equipped machine
hop this will hardly be possible for balls with a diameter much
maller than 2 mm. For balls having a diameter of 2 mm the
ncertainties will be dominated by the uncertainties in the mea-
urements of the ligament thickness. For very deep notches the
orresponding uncertainties in the determination of the strength
an be up to ±10%, but for notches with a length of say 1.5 mm
t is much less (about ±4%).

For much larger balls having a diameter of 10 mm or more
ll measurements concerning the geometry of the balls and the
otches become simple and the overall measurement uncertainty
s given by the uncertainty of the load cell.

.3. Experimental results

A summary of the strength results is given in Table 1,
hich includes the geometric parameters of the two sets
f notched ball specimens, the mean fracture loads and the
eibull parameters10,27–29 of the sets. The data evaluation
as made according to Ref. [30]. The corresponding Weibull
istributions10,28 for the fracture load and the fracture strength
re shown in Fig. 13.

It can clearly be recognised that the fracture loads of each
et are quite different but the strength is not. Within the 90%
onfidence limits the strength data of the two sets are equal.

A typical pair of matching fracture surfaces is shown in
ig. 14. The fracture origin can clearly be recognised. A dis-
ribution of the positions of fracture origins and the distribution
f the first principal stress along the equator line are shown
n Fig. 15. No failures occurred associated with the machining
amage at the end of the ligament.
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Fig. 13. Weibull distributions of the two sets of specimens. Probability of failure (a) v
equal.

Fig. 14. Matching pair of fracture surfaces. The fracture origin is marked by
an arrow. Also shown is the definition of the azimuthal angle ϕ to define the
positions of fracture origins (ϕ = 0 is the direction given by the vector between
the center of the ball and position 1, see Fig. 3).

Fig. 15. Angular distribution of fracture origins (see definition of the azimuthal
angle in Fig. 14). Also shown is the slope of the stress along the equator line
(i.e. positions 1–3, see Fig. 3).
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ersus fracture load and (b) versus strength. The strength of the two data sets is

. Discussion

The procedure to manufacture the notched ball specimens and
o perform the test is relatively simple. Even for the balls with a
iameter of 5 mm, which are relatively small for strength speci-
ens, the notch can – using typical equipment of a machine shop

n a ceramic institute – be machined with such a high precision,
hat the measurement uncertainties resulting from geometrical
naccuracies are in the order of 2% of strength or less. This
s comparable with the uncertainties in standardised bending
ests.31,32

We believe that testing of even smaller specimens is possible,
.g. of specimens having a diameter of 2 mm. But in this case
he exact machining of the notches becomes demanding and the
xact measurement of the ligament thickness will be difficult.
he strongest influence on the tensile stress maximum has the

igament thickness (to about the negative third power). A small
ncertainty in the ligament thickness can cause a large uncer-
ainty in stress. Relative uncertainties of the ligament thickness
ecome smaller as the ligament thickness is increased. There-
ore – at least for small balls – we recommend as large ligaments
s possible, i.e. with a thickness of 25% of the diameter (the
umerical analysis has not been made for thicker ligaments).
he corresponding notch length is about 75%.

For balls with a diameter of 10 mm or larger the measurement
ncertainties become very small, i.e. 1% of strength or even less.
or these tests the limiting factor concerning precision is the
orce measurement. It is quite obvious that for these specimens
he notched ball test is more precise than a standardised bending
est.31,32

The analysis of the fractured specimens showed that all frac-

ure origins were at or very near the surface (see Fig. 14). This
s consistent with the stress distribution in the specimens. The
istribution of the fracture origins over the equator is also consis-
ent with the angular stress distribution (see Fig. 15). Although
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detailed study has not been performed in the actual case, we
now from our work on larger bearing balls, that fracture origins
ften are some kind of surface damage, which – in most cases
is caused by the machining or by the handling of the balls. To

void additional surface damage in our notched ball specimens
roduced during the machining special care was given to pro-
ect the surface area opposite the notch. To give some examples
andling of the balls was made by a pair of polymer tweezers.
uring the grinding the balls were glued into a V-shaped notch,

nd the surface opposite the notch was protected by soft glue.
he specimens were stored in small individual boxes made of
oft materials. We are quite sure that our precautions were suc-
essful and no surface damage was caused by our handling or
achining.
Two sets of notched ball specimens were machined and tested

n this work. They derive from the same production batch. The
achined notches had almost the same width (relative width

2.6%), fillet radius (relative radius 21%) but some scatter in
he length (and in ligament thickness). In the first batch the lig-
ment thickness ranged from 835 to 930 �m (relative thickness
6.7–18.6%) and in the second batch from 1032 to 1115 �m (rel-
tive thickness 20.6–22.3%), i.e. the variation of the ligament
hickness in each set is about ±5%. Uncorrected this would have
serious influence on the determined strength (about ±15%),

nd so should be taken into account in the data evaluation.
herefore the individual ligament thickness of each individual
pecimen has to be determined and accounted for in the stress
etermination. If this variation is not to be taken into account
ach strength test would have an uncertainty in strength of about
5%. However, if an average ligament thickness were to be used
n the determination of the mean or the characteristic strength
here would be no effect. By comparison, the fracture force (see
able 1) in each set is scattered by about ±25%.

In Fig. 13 the data are plotted in Weibull diagrams10,15,30

or the fracture load and strength, respectively. Both diagrams
re plotted on the same relative scale. The data are quite well
rranged along straight lines, i.e. they are well described by
eibull distributions.15 The slope of the lines is the Weibull
odulus, which is a measure for the scatter of data. It is almost

qual in both types of plots, although in the “force Weibull
iagram” the influence of the scatter of the ligament thick-
ess (about ±5% of the ligament thickness and about ±15% in
trength) is not taken into account and in the “strength Weibull
iagram” it is. It is surprising to note that in the “strength Weibull
iagram” the influence of the scatter of the ligament thickness
s completely masked by the wider inherent scatter of strength
ata (about ±25%). We had expected that the force distribution
ould be wider than the strength distribution, because it results

rom the superposition of the inherent strength distribution with
he scatter of the ligaments. However, this behaviour is typical
or the superposition of wide and narrow distributions.

Both sets of specimens differ in the mean ligament thickness;
n the second set it was 20% larger than in the first set. Therefore

he mean fracture load was also larger (by 77%), see Table 1 and
ig. 13. But the strength distributions of both sets are almost
qual. This is a strong hint that the quality of the data analysis
s quite good.

(
i
f
t
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Weibull distributed data show a dependence of strength on
he specimen size.10,15 The larger the specimen, the higher is the
robability of finding a large flaw, which causes a low strength.
f the failure is initiated by volume flaws, for a uniaxial stress
tate the size effect on strength is given by10,15

1 = σ2

(
Veff,2

Veff,1

)1/m

. (5)

he indices refer to specimens with a different size and/or geom-
try. The Weibull modulus is m. The effective volume of the
pecimen is defined by

eff =
∫

σ>0

(
σ

σ0

)m

dV. (6)

he integration is made over volume elements, where the stress
s tensile (i.e. positive). In general, σ0 is an arbitrary normalising
actor. We chose it to be equal to the tensile peak stress at the
quator plane. If a general stress state is applied the stress has to
e replaced by a suitable equivalent stress. Often the principle
f independent action is used:

PIA
eq = (σm

I · Θ(σI ) + σm
II · Θ(σII ) + σm

III · Θ(σIII ))1/m, (7)

here σI, σII, σIII are the principal stresses. The action of com-
ressive stresses is neglected, which is taken into account by the
se of the Heaviside-function Θ. For details see Refs. [10,15].

In the case of notched ball specimens the first principal stress
s large compared to the other stress components, and – since
� 1, it holds that: σPIA

eq ≈ σI , i.e. the fracture behaviour is
riggered by the first principal stress.

If fracture is caused by surface flaws (as in the case described
ere) analogue definitions can also be made for the effective
urface. Fig. 16 shows the effective volume and the effective
urface of the specimens of sets A and B as a function of the
eibull modulus. The influence of the different notch lengths

λ = 0.82 or 0.78, respectively) on the effective volume (surface)
s roughly a factor of 2. The effective volume of the notched
all specimens for a Weibull modulus of m = 12 is about 0.3 or
.7 mm3, respectively (i.e. 0.05 or 0.12% of the ball volume). In
omparison the relative effective volume of the C-sphere speci-
en is also about 0.12% (i.e. volume efficiency). The effective

urface of the notched ball specimens is about 0.95 or 1.6 mm2,
espectively (i.e. 1.3 or 2.2% of the balls surface). In comparison
he relative effective surface of the C-sphere specimen is also in
he range of 2.5% area efficiency. It should be noted that the
-sphere test has only a little higher area efficiency compared

o the notched ball test, the advantage of which is outweighed
ractically by the very difficult and expensive machining of the
-sphere notch. In that respect the achieved gain of effective sur-

ace seems to be unspectacular and we believe that this proposed
otched ball test is the more flexible and commercial solution.

Of course, the effective volume (or the effective surface,
espectively) has also some influence on the strength (see Eq.

5)). In the actual case the effective volume (surface) of the spec-
mens of set B is almost 2 times higher than that of set A and
ollowing Eq. (5) the strength should be almost 6% lower. In fact
his effect is again masked by the scatter of the data and has not
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Fig. 16. Effective volume (a) and effective surface (b) versus the Weibull mod-
ulus for the notched ball specimens tested in this paper: D = 5 mm, ω = 0.13,
ρ = 0.21, λ = 0.82 (for set A) and λ = 0.78 (for set B). Note that specimens A and
B differ by a factor of about 2 with respect to the effective volume and surface.
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ithin each case no significant difference can be detected whether the PIA or
he σI criterion has been used (the symbols are centered on the corresponding
ines).

een accounted for in the above data evaluation (if this effect
ere be taken into account the characteristic strength of sets A

nd B are still equal within a 90% confidence limit).
On the basis of the effective volume a prediction of the four-

oint bending strength of 4 mm × 3 mm × 45 mm specimens7,15

s possible. The predicted characteristic strength is 870 MPa,
hich is a typical value of a commercial high quality silicon
itride material.

In summary, the data evaluation of the notched ball test give
onsistent results, the experiments are easy to perform and the
easurement uncertainties are relatively small.

. Concluding remarks

A new strength test for ceramic balls is proposed. Specimen
reparation and testing procedure are relatively simple and mea-
urement uncertainties are low. This makes the testing of even
ery small balls (down to a diameter of about 2 mm) possible. For

he data evaluation a numerical analysis is necessary. This paper
as provided some simple solutions for a restricted range of rec-
mmended notch geometries. The full results of the analysis can
e found on our homepage.24
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The strength of balls is determined to a large extent by the
uality of their surface, which may also depend on machining
nd handling. In that sense, this strength test examines the qual-
ty of components (the balls) and can even be used to analyse
amage in balls after service.

It is planned to perform experiments on bearing balls (before
nd after action in service) soon.

cknowledgements

The support of this work by the company SKF
www.skf.com) and the very helpful discussions with Hubert
öttritsch and Oskar Schöppl (both at SKF) are gratefully

cknowledged.

ppendix A

In this appendix, a general approach for the relationship
etween the applied force and the induced tensile stress ampli-
ude at the ball’s surface with respect to the dimension of the
otched ball is developed. The geometry of the specimens is
onsidered ideally.

The derivation of a simple formula for calculating the maxi-
um stress is based on beam theory, since the loading situation

n a Notched Ball specimen is similar to a beam with a given
ross-section (i.e. circle segment) loaded by a torque My (see
ig. 17a). There is also some compressive stress superposed,
hich is small compared to the effect by the torque loading. It is

ccounted for in the numerical analysis, but not in the following
erivation.

The tensile stress in the extreme fibre of a torque-loaded beam
s given by

beam
max = My

Iy/ym

(8)

ith the torque My, the moment of the area Iy with respect to
he neutral plane, and the distance ym of the neutral plane to the
xtreme fibre. This formula can be evaluated analytically for a
ross-section given by a circle segment, but leads to a relatively
omplicated expression (see for example Ref. [33]). A much
impler expression is obtained by assuming a cross-section given
y an isosceles triangle, see dashed area in Fig. 17b. Iy and ym

re then given by

y = ah3

36
, (9)

m = 2h

3
. (10)

Actually the derived expression is valid for the case of a long
eam (i.e. the length should be in the range of 10 times the
idth of the beam) with a cross-section defined by an isosceles

riangle. The situation in the notched ball specimen is different,

ince

the cross-section is given by a circle segment, and not by an
isosceles triangle;

http://www.skf.com/
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Fig. 17. Replacement model for the loaded region in the notched ball specimen:
beam (a), loaded by a torque My, with the same cross-section as in the remaining
ligament of the notched ball (see Fig. 2). The circle segment is defined by the
segment length a and the segment height h, see top view of the beam in (b).
Since the moment of the area is a complicated expression, the circle segment
is approximated by an isosceles triangle, as indicated by dashed lines (b). The
n
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11. Börger, A., Supancic, P. and Danzer, R., The ball on three balls test for
eutral plane for the considered bending mode is given by the dashed–dotted
ine. The distance to the tensile stressed surface is ym = 2h/3.

the length of the ligament h is in the order of the height WN
(i.e. a very short beam!);
the ligament has a variable cross-section with respect to the
Z-direction: the tensile stressed surface is given by the curved

1

eramic Society 29 (2009) 2447–2459

surface of the ball, and the opposite area is given by the notch
base with a variable fillet radius;
the influence of Poisson’s ratio is not taken into account in
Eq. (8).
there is also the effect of a superposed uniaxial compressive
stress.

In order to account for all these deviations a correction factor
is taken into account, namely by writing:

max = f
My

Iy/ym

= f
FR

ah2/24
. (11)

he torque My is approximately given by My = R·F (see Fig. 1;
ctually My is given by the projected distance between force
pplication point and the neutral plane: R − ym). By taking the
elationship

= 2h

√
D

h
− 1 (12)

nd the definition h = 2R − LN = D − LN into account, formula
11) can by expressed by

max = f
6F

h2

1
2
√

(h/2R) (1 − (h/2R))
= f

6F

h2

1
2
√

(1 − λ)λ

= fN

6F

h2 . (13)

y defining a new dimensionless factor fN, the expression in Eq.
2) is obtained. In this work the factor fN is defined in that way
o obtain the maximum tensile stress in the equatorial plane (i.e.
osition 1, see Fig. 3).
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